Category Archives: data science

2020 RStudio Conference Livestream Coming to Duke Libraries

RStudio 2020 Conference LogoInterested in attending the 2020 RStudio Conference, but unable to travel to San Francisco? With the generous support of RStudio and the Department of Statistical Science, Duke Libraries will host a livestream of the annual RStudio conference starting on Wednesday, January 29th at 11AM. See the latest in machine learning, data science, data visualization, and R. Registration links and information about sessions follow. Registration is required for the first session and keynote presentations.  Please see the links in the agenda that follows.

Wednesday, January 29th

Location: Rubenstein Library 249 – Carpenter Conference Room

11:00 – 12:00 RStudio Welcome – Special Live Opening Interactive Event for Watch Party Groups
12:00 – 1:00 Welcome for Hadley Wickham and Opening Keynote – Open Source Software for Data Science (JJ Allaire)
1:00 – 2:00 Data, visualization, and designing with AI (Fernanda Viegas and Martin Wattenberg, Google)
2:30 – 4:00 Education Track (registration is not required)
Meet you where you R – Lauren Chadwick, R Studio.
Data Science Education in 2022 (Karl Howe and Greg Wilson, R Studio)
Data science education as an economic and public health intervention in East Baltimore (Jeff Leek, Johns Hopkins)
Of Teacups, Giraffes, & R Markdown (Desiree Deleon, Emory)

Location: Edge Workshop Room – Bostock 127

5:15 – 6:45 All About Shiny  (registration is not required)
Production-grade Shiny Apps with golem (Colin Fay, ThinkR)
Making the Shiny Contest (Duke’s own Mine Cetinkaya-Rundel)
Styling Shiny Apps with Sass and Bootstrap 4(Joe Cheng, RStudio)
Reproducible Shiny Apps with shinymeta (Carson Stewart, RStudio)
7:00 – 8:30 Learning and Using R (registration is not required)
Learning and using R: Flipbooks (Evangeline Reynolds, U Denver)
Learning R with Humorous Side Projects (Ryan Timpe, Lego Group)
Toward a grammar of psychological Experiments (Danielle, Navaro, University of New South Wales)
R for Graphical Clinical Trial Reporting(Frank Harrell, Vanderbilt)

Thursday, January 30th

Location: Edge Workshop Room – Bostock 127

12:00 – 1:00 Keynote: Object of type closure is not subsettable (Jenny Bryan, RStudio)
1:23 – 3:00 Data Visualization Track (registration is not required)
The Glamour of Graphics (William Chase, University of Pennsylvania)
3D ggplots with rayshader (Dr. Tyler Morgan-Wall, Institute for Defense Analyses)
Designing Effective Visualizations (Miriah Meyer, University of Utah)
Tidyverse 2019-2020 (Hadley Wickham, RStudio)
3:00 – 4:00 Livestream of Rstudio Conference Sessions (registration is not required)
4:00 – 5:30 Data Visualization Track 2 (registration is not required)
Spruce up your ggplot2 visualizations with formatted text (Claus Wilke, UT Austin)
The little package that could: taking visualizations to the next level with the scales package (Dana Seidel, Plenty Unlimited)
Extending your ability to extend ggplot2 (Thomas Lin Pedersen, RStudio)
5:45 – 6:30 Career Advice for Data Scientists Panel Discussion (registration is not required)
7:00 – 8:00 Keynote: NSSD Episode 100 (Hillary Parker, Stitchfix and Roger Peng, JHU)

R Open Labs – open hours to learn more R

New this fall…

R fun: An R Learning Series
An R workshop series by the Center for Data and Visualization Sciences.

You are invited to stop by the Edge Workshop Room on Mondays for a new Rfun program, the R Open Labs,  6-7pm, Sept. 16 through Oct. 28. No need to register although you are encouraged to double-check the R Open Labs schedule/hoursBring your laptop!

This is your chance to polish R skills in a comfortable and supportive setting.  If you’re a bit more advanced, come and help by demonstrating the supportive learning community that R is known for.

No Prerequisites, but please bring your laptop with R/RStudio installed. No skill level expected. Beginners, intermediate, and advanced are all welcome. One of the great characteristics of the R community is the supportive culture. While we hope you have attended our Intro to R workshop (or watched the video, or equivalent). This is an opportunity to learn more about R and to demystify some part of R that your find confusing.


What are Open Labs

Open labs are semi-structured workshops designed to help you learn R. Each week brief instruction will be provided, followed by time to practice, work together, ask questions and get help. Participants can join the lab any time during the session, and are welcome to work on unrelated projects.

The Open Labs model was established by our colleagues at Columbia and adopted by UNC Chapel Hill. We’re giving this a try as well. Come help us define our direction and structure. Our goal is to connect researchers and foster a community for R users on campus.

How do I Get Started?

Attend an R Open Lab. Labs occur on Mondays, 6pm-7pm in the Edge Workshop Room in the Bostock Library. In our first meeting we will decide, as a group, which resource will guide us. We will pick one of the following resources…

  1. R for Data Science by Hadley Wickham & Garrett Grolemund (select chapters, workbook problems, and solutions)
  2. The RStudio interactive R Primers
  3. Advanced R by Hadley Wickham (select chapters and workbook problems)
  4. Or, the interactive learning series on R

Check our upcoming Monday schedule and feel free to RSVP.  We will meet for 6 nearly consecutive Mondays during the fall semester.

Please bring a laptop with R and R Studio installed.  If you have problems installing the software, we can assist you with installation as time allows. Since we’re just beginning with R Open Labs, we think there will be time for one-on-one attention as well through learning and community building.

How to install R and R Studio

If you are getting started with R and haven’t already installed anything, consider using using these installation instructions.  Or simply skip the installation and use one of these free cloud environments:

Begin Working in R

We’ll start at the beginning, however, R Open Labs recommends that you attend our Intro to R workshop or watch the recorded video. Being a beginner makes you part of our target audience so come ready to learn and ask questions. We also suggest working through materials from our other workshops, or any of the resource materials listed in the Attend an R Open Lab section (above).  But don’t let lack of experience stop you from attending.  The resources mentioned above will be the target of our learning and exploration.

Is R help available outside of Open Labs?

If you require one-on-one help with R outside of the Open Labs, in-person assistance is available from the Library’s Center for Data & Visualization Sciences, our Center’s Rfun workshops, or our walk-in consulting in the Brandaleone Data and Visualization Lab (floormap. 1st Floor Bostock Library).


Introducing Duke Libraries Center for Data and Visualization Sciences

As data driven research has grown at Duke, Data and Visualization Services receives an increasing number of requests for partnerships, instruction, and consultations. These requests have deepened our relationships with researchers across campus such that we now regularly interact with researchers in all of Duke’s schools, disciplines, and interdepartmental initiatives.

In order to expand the Libraries commitment to partnering with researchers on data driven research at Duke, Duke University Libraries is elevating the Data and Visualization Services department to the Center for Data and Visualization Sciences (CDVS). The change is designed to enable the new Center to:

  • Expand partnerships for research and teaching
  • Augment the ability of the department to partner on grant, development, and funding opportunities
  • Develop new opportunities for research, teaching, and collections – especially in the areas of data science, data visualization, and GIS/mapping research
  • Recognize the breadth and demand for the Libraries expertise in data driven research support
  • Enhance the role of CDVS activities within Bostock Libraries’ Edge Research Commons

We believe that the new Center for Data and Visualization Sciences will enable us to partner with an increasingly large and diverse range of data research interests at Duke and beyond through funded projects and co-curricular initiatives at Duke. We look forward to working with you on your next data driven project!

Computational Reproducibility Pilot – Code Ocean Trial

A goal of Duke University Libraries (DUL) Code Ocean Logois to support the  growing and changing needs of the Duke research community. This can take many forms. Within Data and Visualization Services, we provide learning opportunities, consulting services, and computational resources to help Duke researchers implement their data-driven research projects. Monitoring and assessing new tools and platforms also helps DUL stay in tune with changing research norms and practices. Today the increasing focus on the importance of transparency and reproducibility has resulted in the development of new tools  and resources to help researchers produce and share more reproducible results. One such tool is Code Ocean.

Code Ocean is a computational reproducibility platform that employs Docker technology to execute code in the cloud. The platform does two key things—it integrates the metadata, code, data and dependencies into a single ‘compute capsule’, ensuring that the code will run—and it does this in a single web interface that displays all inputs and results. Within the platform, it is possible to develop, edit or download the code, run routines, and visualize, save or download output, all from a personal computer. Users or reviewers can upload their own data and test the effects of changing parameters or modification of the code. Users can also share their data and code through the platform. Code Ocean provides a DOI for all capsules facilitating attribution and a permanent connection to any published work.

In order to help us understand and evaluate the usefulness of the Code Ocean platform to the Duke research community, DUL will be offering trial access to the Code Ocean cloud-based computational reproducibility platform starting on October 1, 2018. To learn more about what is included in the trial access and to sign up to participate, visit the Code Ocean pilot portal page.

If you have any questions, contact

Fall Data and Visualization Workshops

2017 Data and Visualization Workshops

Visualize, manage, and map your data in our Fall 2017 Workshop Series.  Our workshops are designed for researchers who are new to data driven research as well as those looking to expand skills with new methods and tools. With workshops exploring data visualization, digital mapping, data management, R, and Stata, the series offers a wide range of different data tools and techniques. This fall, we are extending our partnership with the Graduate School and offering several workshops in our data management series for RCR credit (please see course descriptions for further details).

Everyone is welcome at Duke Libraries workshops.  We hope to see you this fall!

Workshop Series by Theme

Data Management

09-13-2017 – Data Management Fundamentals
09-18-2017 – Reproducibility: Data Management, Git, & RStudio 
09-26-2017 – Writing a Data Management Plan
10-03-2017 – Increasing Openness and Reproducibility in Quantitative Research
10-18-2017 – Finding a Home for Your Data: An Introduction to Archives & Repositories
10-24-2017 – Consent, Data Sharing, and Data Reuse 
11-07-2017 – Research Collaboration Strategies & Tools 
11-09-2017 – Tidy Data Visualization with Python

Data Visualization

09-12-2017 – Introduction to Effective Data Visualization 
09-14-2017 – Easy Interactive Charts and Maps with Tableau 
09-20-2017 – Data Visualization with Excel
09-25-2017 – Visualization in R using ggplot2 
09-29-2017 – Adobe Illustrator to Enhance Charts and Graphs
10-13-2017 – Visualizing Qualitative Data
10-17-2017 – Designing Infographics in PowerPoint
11-09-2017 – Tidy Data Visualization with Python

Digital Mapping

09-12-2017 – Intro to ArcGIS Desktop
09-27-2017 – Intro to QGIS 
10-02-2017 – Mapping with R 
10-16-2017 – Cloud Mapping Applications 
10-24-2017 – Intro to ArcGIS Pro


11-09-2017 – Tidy Data Visualization with Python

R Workshops

09-11-2017 – Intro to R: Data Transformations, Analysis, and Data Structures  
09-18-2017 – Reproducibility: Data Management, Git, & RStudio 
09-25-2017 – Visualization in R using ggplot2 
10-02-2017 – Mapping with R 
10-17-2017 – Intro to R: Data Transformations, Analysis, and Data Structures
10-19-2017 – Developing Interactive Websites with R and Shiny 


09-20-2017 – Introduction to Stata
10-19-2017 – Introduction to Stata